Clay Tolerant Superplasticizer for Concrete

Robert Baumann, Marc Schmitz, Sudhir Mulik
Value Proposition

• Opportunity Statement
 • PCE based on a styrene maleic anhydride (SMA) copolymer backbone reduce the sensitivity to clay impurities significantly

• Key benefits of this technology will address the following aspects
 • Intensive washing of aggregates is avoided to lower consumption of clean water
 • Addition of more PCE to compensate for the intercalated quantity will add to cost
 • Retain concrete strength
State of the Art

• Deactivation of PCE in the presence of swellable clays
 • Polyethylene glycol chain get intercalated in montmorillonite layer structure

• Possible countermeasures
 • Extensive washing of aggregates
 • Use of scavengers
 EP 1838643 B1 describes the use of cationically charged polymers to inert clay impurities
 • Use of superplasticizers without side chains is less effective and does not provide slump retention
Structural Elements of PCE

• **Backbone Chemistry**
 • Polymethacrylic acid
 Mn 3000, Mw 5000
 • Styrene / maleic anhydride copolymer

<table>
<thead>
<tr>
<th></th>
<th>Mn</th>
<th>Mw</th>
<th>ratio styrene : maleic anhydride</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA 1000</td>
<td>2000</td>
<td>5500</td>
<td>1:1</td>
</tr>
<tr>
<td>SMA 2000</td>
<td>3000</td>
<td>7500</td>
<td>2:1</td>
</tr>
<tr>
<td>SMA 3000</td>
<td>3800</td>
<td>9500</td>
<td>3:1</td>
</tr>
</tbody>
</table>

• **Sidechain chemistry**
 • Polypropylene glycol (NH₂-PPG)
 O- (2-aminopropyl)-O’ (2-methoxyethyl) polypropylene glycol (Mn 600)
 • Polyethylene glycol monomethyl ether
 MPEG 550, 1000, 2000
Superplasticizer Overview

- SMA-Estes

\[\text{Grafting Ratio is the molar ratio of maleic half ester to maleic acid} \]

- PMAA-Estes
 - Produced using sodium hyperphosphite catalysis
- Commercial PMAA-Ester
- Beta Naphthalene Sulfonate Condensate
Structural Variations

• Backbone Chemistry
 • Acrylic
 • Styrene/Maleic Anhydride – Monomer ratio

• Side Chain Architecture
 • Side Chain Chemistry – EO vs. PO
 • Side Chain Length – 550 to 2000
 • Grafting density
MORTAR FORMULATION

<table>
<thead>
<tr>
<th>Component</th>
<th>(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement OPC CEM I 42,5 R*</td>
<td>500</td>
</tr>
<tr>
<td>Quarzsand H 32</td>
<td>500</td>
</tr>
<tr>
<td>Sand particle size 0.2 - 1 mm</td>
<td>600</td>
</tr>
<tr>
<td>Sand particle size 1 - 2 mm</td>
<td>400</td>
</tr>
<tr>
<td>Superplasticizer (as solid)</td>
<td>1.9</td>
</tr>
<tr>
<td>Bentonite clay</td>
<td>8.0</td>
</tr>
<tr>
<td>Water</td>
<td>288.1</td>
</tr>
</tbody>
</table>

W/C ratio 0.58
Superplasticizer 0.38% bwc
Clay contamination 0.4% based on solids

We tested for
- Initial flow with/without clay
- Slump retention (1 hour)
- Cement setting retardation
Performance Results

<table>
<thead>
<tr>
<th>Plasticizer</th>
<th>Backbone</th>
<th>Sidechain</th>
<th>grafting ratio</th>
<th>Slump Value w/o Clay (mm)</th>
<th>Slump Value w/ Clay (mm)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial PCE</td>
<td>MAA</td>
<td>MPEG 1000</td>
<td>0.3</td>
<td>300</td>
<td>214</td>
<td>29</td>
</tr>
<tr>
<td>Commercial BNS</td>
<td>MAA</td>
<td>MPEG 550</td>
<td>0.42</td>
<td>248</td>
<td>210</td>
<td>15</td>
</tr>
<tr>
<td>MPEG-PMAA</td>
<td>MAA</td>
<td>MPEG 550</td>
<td>0.42</td>
<td>277</td>
<td>212</td>
<td>23</td>
</tr>
<tr>
<td>NH2-PPG PMAA</td>
<td>MAA</td>
<td>NH2-PPG</td>
<td>0.42</td>
<td>246</td>
<td>229</td>
<td>7</td>
</tr>
<tr>
<td>NH2-PPG-SMA A4</td>
<td>SMA 1000</td>
<td>NH2-PPG</td>
<td>0.11</td>
<td>245</td>
<td>222</td>
<td>9</td>
</tr>
<tr>
<td>NH2-PPG-SMA A5</td>
<td>SMA 1000</td>
<td>NH2-PPG</td>
<td>0.5</td>
<td>252</td>
<td>234</td>
<td>7</td>
</tr>
<tr>
<td>MPEG-SMA A2</td>
<td>SMA 1000</td>
<td>MPEG 550</td>
<td>0.67</td>
<td>300</td>
<td>283</td>
<td>6</td>
</tr>
<tr>
<td>MPEG-SMA A3</td>
<td>SMA 1000</td>
<td>MPEG 1000</td>
<td>0.67</td>
<td>282</td>
<td>269</td>
<td>5</td>
</tr>
<tr>
<td>MPEG-SMA A5</td>
<td>SMA 1000</td>
<td>MPEG 2000</td>
<td>0.67</td>
<td>267</td>
<td>260</td>
<td>3</td>
</tr>
</tbody>
</table>

The presence of clay causes:

- Strong deactivation of acrylic MPEG PCE
- Strong deactivation of beta naphthalene sulfonate condensate
- Acrylic PPG PCE shows low clay sensitivity, but low plasticizing effect
- SMA based comb polymer with PPG side chain show low clay sensitivity, but low plasticizing effect
- SMA based comb polymer with MPEG side chains show strong plasticizing effect and are clay tolerant
- SMA based comb polymers with MPEG are more effective with shorter side chains
At a given grafting density the shorter side chains perform better. This is contrary to acrylic PCEs.
Best results could be achieved with a backbone of S/MA ratio of 1:1, MPEG 550 and a grafting density of 1 (1:1 ratio of half ester to bi-acid)
Other Properties

- Impact on cement setting rate (without clay)

![Setting process with ultra sonic graph](image)

- Impact on concrete strength (without clay)

<table>
<thead>
<tr>
<th>Sample</th>
<th>W/C Ratio</th>
<th>Tensile Strength after 1 day (N/mm²)</th>
<th>Tensile Strength after 7 days (N/mm²)</th>
<th>Compressive Strength after 1 day (N/mm²)</th>
<th>Compressive Strength after 7 days (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acrylic PCE</td>
<td>0.50</td>
<td>3.1</td>
<td>5.1</td>
<td>13</td>
<td>29.2</td>
</tr>
<tr>
<td>SMA PCE</td>
<td>0.50</td>
<td>3.2</td>
<td>6</td>
<td>13</td>
<td>32.5</td>
</tr>
</tbody>
</table>
Other Properties – Stability

Acrylic PCE
W/C ratio 0.57

- Without clay: 273 mm
- With clay: 204 mm

SMA PCE
W/C ratio 0.57

- Without clay: 283 mm
- With clay: 248 mm
Other Properties – Slump Retention (without clay)

W/C ratio 0.5

Slump Retention [mm]

- acrylic PCE
- SMA PCE
Summary

- PCEs with SMA polymer backbone have shown surprising robustness as concrete superplasticizers in the presence of clay.
- Their effect on concrete rheology, slump retention, cement setting and strength development is comparable to acrylic PCE.
- The bulky, hydrophobic polymer backbone seems to prevent intercalation of the brush polymer.
- The dispersion mechanism apparently is different to traditional PCE as low Mw side chains enable improved flow properties.
- More work is required to completely understand their mode of action as concrete superplasticizers.
Thank you for your attention
No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to “Dow” or the “Company” mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.